Mr. BROWNBACK. Mr. President, I thank my colleague from Oklahoma for his short, clear statement. I have some charts that will back him up.

I am delighted we are having this debate. It is time. We last debated this issue on the Senate floor in 1998. A lot has developed since then. As my colleague from Oklahoma pointed out, much of the science has passed by the embryonic stem cell and the need for embryonic stem cells, as the science has gone to adult stem cells and cord blood, and that is where the treatments are. I will show pictures of patients in that area and what is taking place.

I am delighted to be debating my colleagues. We have been debating this issue for some time. I think it is time we have a vote and look at this issue.

When I was a young Congressman first running for Congress in Chanute, KS, a young man approached me. He knew me and knew I was running for office. He said: Can you answer one question for me?

I said: I will try. I was anxious to be of help. I was anxious to prove I knew policy issues, I knew right from wrong, and I would be a good Congressman for him.

He asked me: Why is it we will fine somebody up to half a million dollars for destroying a bald eagle's egg, and yet we will fund the destruction of young humans? Why is it Federal law, both cases at that point in time, as far as the funding of abortion--I don't remember when that was changed, although now we are talking about the destruction of young human life again.

He said: Why is that? I thought for a while. I thought: That is a good question. I don't know why that is.

I have a picture which may seem an odd place to start this debate, but it will tie in, and I will show how. I have a picture of a bald eagle's egg and a bald eagle. If I asked my 8-year-old children what happens if I destroy this egg, will I get this eagle? They will say: No, you don't get the eagle if you destroy the egg.

Why not? That egg is not an eagle. I know, but the egg is the eagle because the eagle comes out of the egg. Well, [the Eagle] doesn't look like [the egg]. I know it is an eagle in the egg, and if you destroy the egg, you don't get the eagle. That is why we say in the Endangered Species Act, if you destroy this bald eagle's egg, you can have a maximum fine of up to half a million dollars.

I want to show some other eggs, if I can. These are human embryos, fertilized eggs. They are fertilized eggs such as this bald eagle's egg is. This one, Mother Teresa once was a human embryo. JFK was once a human embryo. Martin Luther King was once a human embryo. Ronald Reagan was once a human embryo.
Again, I think if we ask ourselves a simple question: If I destroy this, do I destroy this in the same way? Does it happen? If I destroy this human embryo—everybody on the Earth was a human embryo at some time—if I destroy that human embryo, do I somehow go ahead and get to be here anyway?

The answer, of course, again, if you ask my 8-year-old children, is: No, you don't get to be here because you destroyed the very start of your life, you destroyed the beginning of it, you destroyed that biological entity you were because the same genetic material that was there was in Ronald Reagan, and it was a unique set of genetic material, unique to him. The same for Martin Luther King, JFK, or Mother Teresa, and the billions of people around the world. We all started as a human embryo, and if you destroy the embryo, you destroy the person.

It is a unique set of genetic material right after the fertilization takes place. It doesn't matter where the fertilization takes place. It can take place in an IVF clinic or the old-fashioned way or it can take place by cloning. You still have [an embryo]. You can have [the embryo], or you can destroy [it] and never get [the person]. That is pretty direct, straightforward, nobody argues it. And we are not talking theology, as people try to drag this into the debate. We are talking basic biology. This is basic biology 101. If you destroy the embryo, you don't get the full-scale person. [The embryo] is a genetic person, entity, special, unique, sacred, and so is this person.

My [first] point is, if we use taxpayers' dollars to fund the expansion of embryonic stem cell research, you have to inherently destroy young humans to do this, and do we want to do that? What was previously said in Dickey-Wicker was: No, we will not use taxpayers' dollars to destroy young human life. Here we would change that and say: Yes, we do; it is for a special purpose, a special reason; these are unique; these are something we are really going to get cures for. And that is my second point, cures.

The other side has talked about cures for a long period of time, and I want cures, and we are getting cures to take place. If we had taken the half a billion dollars, $500 million that we have invested in embryonic stem cell research in animals and humans and invested that instead in adult stem cell research and cord blood research, we would probably have a lot more people in clinical trials today. We would have a lot more people, I believe, being treated and alive today if we had taken the half a billion dollars that we put, in the last 5 years, into these areas of embryonic stem cell research and put them in adult stem cells and cord blood, we would have more people alive today, walking around, experiencing treatments and I believe cures. Let me show some faces of these people.

This is a beautiful lady, Jacki Rabon. She was involved in a traffic accident. She is a paraplegic. She had to go to Portugal to get a treatment with her own adult stem cells. They are olfactory stem cells from the base of the nose. They take them out, grow them, and put them back in the spinal cord injury area. She had no feeling, no mobility, nothing below the waist. She is now getting feeling in her hips through this treatment, adult stem cells, her own stem cells. She is getting feeling in the hips and walking with the use of braces, but she had to go to Portugal to do this. Why isn't this being done in America? Why aren't we having people treated here? We are not adequately funding this area. She wants to walk and I want her to walk and she could, but we are taking money and putting them into these speculative areas when we have [treatments] that are working. We have to go to Portugal to get them.

Let's look at this next picture. This is an amazing story. This young man is named Ryan Schneider. I hosted him at a press conference 2 hours ago. He is 3 years old, a young man with cerebral palsy. His mother saved his cord blood.

At 2 years of age, she started noticing that he was not growing and that his arms were retracting. She took him to the doctors and they said: Yes, CP; he has CP. The mother was devastated, but she would not give up.

The morning after the diagnosis, she was lying in bed and she had this a-ha moment. She said: I saved his cord blood and let's use the cord blood and treat him with the cord blood because I think that can work and get him moving again.
She called all around the country and couldn't find anybody willing to do this procedure. She was pleading with these doctors: It is simply his own cord blood, taking his own cord blood and putting it back in; this isn't going to hurt him.

They said: We can't do it, not sure, we don't have FDA protocol.

Finally, she finds a researcher at Duke University, whom we had in to testify, who said: Yes, we will do it, and the worst thing that can happen is nothing because nothing will happen, it is his own cord blood; it is not going to hurt him.

She goes down to Duke University, takes his own cord blood, and they inject it in him. This is when he was 2. He was at a press conference today. There is no retraction taking place in the arms. He has full mobility. The thing he likes to do the most is bug his 8-year-old sister, which is what his mother said today: We like that, too, that he wants to do that. He has a word vocabulary that is normal for the age range. She said: Why isn't this an FDA-approved situation? Why are we not doing more research? Why aren't more people storing and saving cord blood so when this happens people can get cures?

Well, we haven't put enough funding into it. If we had put the half a billion more dollars into this area instead of embryonic, we might have a bunch of kids treated for CP who are not getting treated and be like Ryan running around and bugging his sister instead of having CP.

Here is a real interesting story, too, Keone Penn. We had him in to testify. He has sickle-cell anemia. He was dying. It is a real difficulty. Sickle cell is a very difficult problem to face, very painful problem for a child to face. He went through the New York Cord Blood Center, got treatment there, got a match. They had enough of a genetic match that it works for him. There are no indicators of sickle-cell anemia today. None. He isn't in Washington today, but we have had him in to testify.

We need a lot more cord blood stored. We need a lot more diversity of cord blood stored. We could use that half a billion dollars to store more cord blood and have more ethnic diversity so more people can get treated, so more people such as him will live, not die; so more people will not have to suffer what he went through. There could be real treatments with these dollars to help them.

No. 1, why are we destroying young human life? We fine people for destroying life in other forms that we want to preserve, such as the bald eagle.

No. 2, why would we take this money away from current areas where we can really treat people and [put them] especially in the areas where we are not getting any treatments [and] we are having all the problems with tumor formation, as Dr. Coburn noted. Why are we doing that? So that fewer people are getting treatments and people are having to go overseas to get these treatments? Why? And why would we ask to do more of it now? That is what [the Embryonic Stem Cell Funding] bill is basically asking to do: That we would change Federal law so you could destroy human life with Federal taxpayer dollars. No. 2, that we would use this money, and more of it, to fund speculative areas that even their set of scientists are saying are a minimum of a decade or two away from treatments which we are not [currently] getting, and we have taken away from Keone Penn, and treatments that he could get. Why? What sense does that make?

In 1943, C.S. Lewis delivered a series of lectures--this is the gentleman who did the Narnia series that has been made into a movie that a lot of young people have seen and read the Narnia series books, along with a lot of other pieces--a brilliant writer and a brave man. He did a lecture series called "The Abolition Of Man" in 1943, a very forward-looking series, and he noted at one point: "If man chooses to treat himself as raw material, raw material he will be." It echoes themes of what we are hearing today. I don't give anybody over to a bad heart. I think everybody wants cures. I want cures. I see a way we can get treatments and hopefully cures. I want things done ethically. I don't give anybody over to a bad heart. But what we are doing is treating man as raw material--raw material to feed into a system that we hope will produce some results.

Unfortunately, it is not the first time we have in human history that we have treated people as raw
material. We have frequently, in the past, subjected the weaker to the will of the stronger, and we have always regretted it afterwards. We shouldn't do that today. It shouldn't have happened then, and we don't need to do it now. We are talking about the embryo, the young human life.

I want to go through a couple of these points about what it is we are talking about. President Clinton's bioethics board defined young human life--and I want to give their definition for it. The National Bioethics Advisory Commission says that an embryo is: ``The developing organism from the time of fertilization--the time of fertilization--until significant differentiation has occurred, when the organism then becomes known as a fetus.'' So it is an embryo by that Presidential advisory bioethics analysis.

And here is a definition taken from a textbook, the Human Embryology textbook states:

> Although life is a continuous process, fertilization is a critical landmark because, under ordinary circumstances, a new, genetically distinct human organism is thereby formed. The combination of 23 chromosomes present in each pronucleus results in 46 chromosomes in the zygote. Thus the diploid number is restored and the embryonic genome is formed. The embryo now exists as a genetic unity.

That isn't Sam Brownback saying this, this is Human Embryology, Third Edition, saying that.

We have a distinct genetic entity once it is formed. It doesn't matter the location. It can be the old-fashioned way, as I noted at the outset, via the human body; in vitro fertilization; it can be what some refer to as somatic cell nuclear transfer, SCNT, or what most refer to as human cloning. It is a separate entity.

Pioneer stem cell researcher Jamie Thomson goes further. He says of human cloning: "By any reasonable definition, you're creating an embryo. If you try to define it away, you're being disingenuous." Jamie Thompson. So we are talking about a human embryo.

Now, some would say it is not big enough to be human life. Here I want to make a point, on this chart, if I could. My colleagues made the point that the human embryo is about this big; very small at its beginning of life. Therefore, [he says] because it is small and is fragile and it can't do anything on its own, you know, it is really not human life. And [he says] we should be able to destroy it, for a good purpose. We are doing this for a good purpose. This isn't us being malicious; we are doing this for a good purpose. Well, the interesting thing about that, as I said at the outset--of course, when you destroy [an embryo], you never get the full human at any point in time. This is a separate genetic entity, even at this point in time. Also, the point was made to me one time that if the Big Bang theory is correct, then at one point in time, this is the size of the universe. Then it is all condensed down, this much matter is condensed down to that infinitesimal, small size before it blows. So I guess if you destroy it then, it doesn't become the universe, but that doesn't matter. It is too small to be seen as significant, and it can't do anything on its own. It sits in a frozen state, and because it can't take care of itself, because it can't grow, because it can't breathe in this situation, then it is not human--because it can't take care for itself, because it is too fragile. It doesn't breathe. It doesn't do some of the things that we give over to the presence of life.

I want to give some examples, real quick, of young people--let's use this one. This is Isaiah Sullivan Royal, born to Hannah and Jed Royal. Hannah works in my office. Isaiah was born significantly premature. As you can see, he is a fighter. He is a tough little guy. He has been through a lot--more medical treatments than most people would have gone through in their lifetime already. Without human intervention, without help, he doesn't survive and make it. Yet he is a young human, and he is beautiful. Talk to his parents about him. So the idea that just because of smallness, you can't take care of yourself doesn't make you human, is completely false. Do we want to say that because you are young and small and weak, you are worthless or helpless or you are not human, which would be even worse? That just doesn't stand. That doesn't stand to reason. Yes, human life is fragile, but it is of infinite worth and it is of infinite value.

I want to now look at the overall issue of where we are with adult stem cell work. Dr. Coburn hit on this
area, and I want to put some more points to it. We have, by peer reviewed articles, 72 different areas, different human maladies being treated with adult stem cells or with cord blood--72. There was recently an article in one of the magazines saying: Well, we don't think the number is actually 72, it may be 68. It may be this or that.

We can wait a day or two and it will be up to 72 because there are more coming out in all of the areas. Some people are quibbling and saying: Well, these are not in FDA treatment trials. That is true, a number of them are not because we don't have sufficient funding. A half a billion dollars would really help us to move that along to get these in FDA treatment trials. These are in human clinical applications, where there are human beings treated for 72 different maladies by adult stem cells or cord blood--72, and for embryonic, we have zero.

We have known about embryonic stem cells in mice for 25 years. We have not been able to get them to work in this situation. They form tumors and they are rapid growing. With adult stem cells we know what they are about, we know what they are doing, and they are working, and people are being treated: 72 adult stem cell treatments to zero embryonic treatments. Again, you can quibble that they are not in FDA trials, not available to everybody. That is true. A lot of people are having to go overseas for treatments in some cases, and in some cases they are actually treatments that were developed in the United States, but because of FDA approval processes being long, they are having to get treatment overseas, even though the process was developed here.

I want to show you the specific areas on one chart: 72 current human clinical applications using adult stem cells.

As I said, we could wait a week or 2 weeks, it will be more. Here are some of the amazing ones: Bladder diseases, they are developing, actually growing bladders with your own stem cells for people who have had bladder cancer or something of that nature, they are able to actually form a shell structure and the cells grow around it. The ones I like the best are in the heart areas, the cardiovascular. I had David Foege speaking at a press conference we had. He could hardly walk, advanced stroke, because of his heart problem, no infracting rate. He got this treatment, and he went first to a place in the United States, and they said: Look, you are just too advanced in your problematic stage. We are not going to treat you here because we want to treat early on and we only have so much money and we could use more, but we only have so much.

So the guy goes to Thailand for the treatment--it may have been developed in the United States. I am not certain that it was developed in the United States, but it is used here but only on people with great opportunity to make it through. He goes to Thailand, gets this treatment. His indicators of what happened to him in the stroke are diminishing. He is out walking. He spoke at the press conference that we had, and this man has got life again. Otherwise, he would, in all probability, be dead today. And how many people are like him, that because we have slowed the development of the adult field down by putting so many of our resources in the nonproductive embryonic area, and we are getting interesting science, but with adult we are talking about real people now. We are talking about real lives of individuals. How many more of them can get treated, and how many people can afford to fly to Bangkok to get this treatment? How many are able to do that? Yet they could go somewhere in the United States. I mean, my goodness, I hope we start thinking about the people involved in this and seeing the success in so many various and different fields. I think it is important we would do that.

Mr. President, I want to point out we will have, as my colleagues know, three votes that will be taking place. I do hope people will support the fetal farming ban. We shouldn't be growing young fetuses and using them for research, period. Some people are wanting to grow them further, cells differentiate and use it then. What we are talking about is an actual ban on [Fetus Farming]. I am hoping my colleagues will support that because we should not be doing that. I hope everybody would see that there is a huge moral dilemma with doing that. It is a bill that will be put forward. There is an alternative bill coming up with these pluripotent cells that I am hoping my colleagues can support.
The focal point is this, do we use taxpayer dollars, Federal taxpayer dollars, to destroy young human life for research purposes? I would hope it is seen that we could develop and put forward a very clear argument and rationale as to why you shouldn't do that. It is illegal. The Dickey-Wicker appropriations language, to start off with, that is the law we previously passed. It is immoral. We shouldn't use a weaker person for the benefit of a stronger person. And it is unnecessary. That is actually the beauty of it. We are presenting false choices to people. The choice that works has no ethical problem, and we can get broad-based support for it. Then, we can have more Jacki Rabons, Ryan Schneiders, and Keone Penns who are getting treatments now, and their lives are being saved, people staying in the United States for treatment rather than going overseas for the treatment, and we have got a lot of people being successfully treated and hopefully cured.

I may use that term "cured" too loosely because these are at the early stages. These are treatments that are showing enormous promise, but we can't--they are not, many of them are not in any sort of FDA-approved trial, so we can't use that term "cure." But we have a lot of successes.

The other road that is being talked about is the use of human life as raw material, and if we do that, raw material we will be. We will cheapen life. And we cheapen life any time we use it for anything other than the sacredness that life is. I hope, at the end of the day, that would be the thing we grab onto. Clearly, embryonic stem cell research is unnecessary. We don't want to cheapen human life.